Algebraic and geometric forms, tangents and normal, blending functions,
reparametrization, straight lines, conics, cubic splnes, Bezier curves and

B-spline curves. ;
I 15%
Plane surface, ruled surface, surface of revolution, tabulated cylinder, bi-
cubic surface, bezier surface, B-splne surfaces and thewr modelmg 1
techniques.
Solid models and representation scheme, boundary representation,
constructive solid geometry. 3
IV 15%
Sweep representation, cell  decomposition,  spatial  occupancy
enumeration, coordinate systems for solid modeling. 4



4.1 Mathematical Models for Curves and Surfaces

We all have an mwtve understanding of curves and surfaces. But can we answer
mathematically these bastc questions: What s 2 curve? What 1 2 sutace It fums out

|
here are several acceptable answers, and that diferent branches of mathematics
f
s

iherent detinitions, We first mroduce some of the fundamental notions throue
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A straight line, or simply a /ine, m Euclidean space 15 a set of points p that satisfy
P-D, =Ulp, —Py) UECDAD), PyE];.
Here p, and p, are arbitrary but distinct potnts of the line. The equation above contatns a

patameter 1 and 1s called a paramenric equation. As the parameter  takes all possible values
from munus infinity to plus mfimity, the point p traces the entire e,




The parametric equation of the lme can be written m a different format. Algebraic
mantpulation of the orignal equation yields

p=(I-u)p, +up,
This 15 the fundamental equation of finear inferpolation. It shows that

i=0=p=p,
I=1=p=p,



P—p, =u(p, —py). u<[0.1]. p,=p,.

Letting

g = 1—1us

a, =u

the interpolation equation can also be written as

P = doPo + 1Py
g+ a; =1

Figure 4.1.1.1 — Linear interpolation



EE =

~[2] - (:

Po Ft — —d .

I

the equation of the plane takes the famultar fom

v+ +d=0.



Figure 4.1.1.2 — A plane defined by a point and a normal vector

We defined a line by 1ts parametric equation and a plane by 1ts implicit equation. Lines also
have implicit equations and planes parametric equations. For a line we consider two non-
parallel planes and write

ax+by+cz+d =0

a,X+by+c,z+d, =0



4.1.2 Curves

Caleulus textbooks and most of the literature on curve modeling defme a curve as a set of
points p that safisty a sef of parametric equations:

D, = (1)
By =h).
2.= f{u)

These can be abbreviated as
p=1u).



set of reals we obtain the complete curve. If we restrict # to an mterval. we define a curve
segmeit.

It 1s important to understand that the same curve (1.e., set of points) can be defined by
different parametric equations. The function f defines not only a curve but also a
parameterization for 1t, and there are many ways of parameterizing the same curve.

The function f and some of its derivatives are usually required to be continuous. If f 1s
. . 0 : . . D . .
continuous, the curve 1s called ¢ continuous. If both the function and 1ts first derivative

are contimuous, we say the curve 1s ¢ continuous. In general. d CUrve 15 C! continuous if
f plus its first 7 derivatives are continuous.

If a curve 1s parameterized by 1ts arc length s, the derivatives of the generic point of the
curve p(s) are related to the tangent and normal to the curve as follows



]
Y =00+ 0+ g1+,

p=b + b’ b +b,

N B
=GO Gl

[ we mterpret the coeffictents as the coordmates of ponts

l,

(,




= 2
P = Pl +PLli 4+ pd+PpPg -



which shows that the eeneric pount of a parametric polynomsal curve can be expressed as a
[inear combumation of ofher potnts, usually called canfrol poins.

The parametric definttion of a curve b ifs lmitations. For example, space-filling “curves™
can be defined by contumous £ functtons. These “curves” confradict our tnfuition of a curve

a2 1-D entity, becanse they actually cormespond to 2-D or 3-D regtons of space. In
addition, parametric curves can selfntersect, If seli-tntersections are undestrable, we can
modsla curve by a different mathematical entity called a mantfold
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Figure 4.1.2.1 — Compact. connected 1-manifolds




fi(x.3.2)=0
Hxpy.2)=0

This 1s a generalization of the implicit equation of a straight line, discussed in the previous
section. The most iferesting class of curves defined mmplicitly arises when the functions f
are algebraic, 1.e.. they are polynonmuals in the spatial variables x. v, z.

A

—

I

= |

/--_\--L

Figure 4.1.2.3 — A circle defined implicitly

L.



Now two parameters are needed. because surfaces are mtrinsically two dimensional. These
equations may be abbreviated as



At each pomt of a smooth surface there are infinitely many lines tangent to the surface.
These lines define the tangent plane at the point. The tangent plane 15 perpendicular to the
normal o the surface.

If we let

=g

and substifute 1n the parametric equatton of a surface, we obtam

p=flg,(1).¢,(1)]=h(r).



. , 0
dervatrves of the b functions. Therefore. the tangent vector fo a constant-r curve 1s =

il
d

. 0P ,
and the fangent fo a constant+ curve 18 6)_ The normal to the surface must be
1.

perpendicular fo both of these tangents, and therefore (assuming the two vectors are nof
parallel) the unit normal 1 given by

o op

—X—

d g
iy dp|

¥ —

L

=




Figure 4.1.3.1 shows that the surface of a solid cube 15 an example of a piecewise-planar,
or polyhedral, closed 2-manifold. It 15 a collection of polygonal faces such that the
neighborhoods of vertices. or of points m the interior of an edge. or in the interior of a
face, all can be deformed elastically so as to become disks.

N

Figure 4.1.3.1 — The surface of a solid cube 15 a closed 2-manifold




Cross section of
neighborhood

Figure 4.1.3.2 — The boundaries of two cubes glued
at an edge or at a vertex are not 2-manifolds



A plane 1s the simplest example of an algebraic surface, and 1s defined by a linear implicit
equation. Equations of degree higher than one correspond to curved surfaces. For example,

a sphere of radius R. centered at the origin. 1s defined by
X“+VvV +2—-R =0,

and a cylinder of radius R and axis coincident with the - coordinate axis 1s defined by

Vf<> | —

Parametric polynomial or rational surfaces can be implicitized, but the resulting algebraic
varieties typically have much higher degrees.



where the prime denotes the derivative. The geometric meaning of these constraints is
shown in Figure 4.2.1.1.

b1

f(u)

b2
bO

0 1 u
Figure 4.2.1.1 — A quadratic polynomial and its three defining points.

The derivative of f 1s
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These three equations can be written together in matrix form as



Modeling Complex Shapes

We want to build models of very complicated objects

Complexity is achieved
using simple pieces

— polygons,

— parametric curves
and surfaces, or

— implicit curves
and surfaces

This lecture:
parametric curves




What Do We Need From Curves
In Computer Graphics?

» Local control of shape
(so that easy to build and modify)

» Stabllity
» Smoothness and continuity

» Abllity to evaluate derivatives
» Ease of rendering



Curve Representations

« Explicit: y=f(x) y=x y= mx +b
— Must be a function (single-valued)
— Big imitation—vertical lines?

« Parametric: (x,y) = (f(u),g(u))
+ Easy to specify, modify, control ,,-——-.._‘____'./

— Extra “hidden” variable u, the parameter

(x.y)=(cosu.smu) / :
« Implicit: f(x,y)=0

+ y can be a multiple valued function of x
— Hard to specify, modify, control

2, .2
+y =1 =0



Parameterization of a Curve

« Parameterization of a curve: how a change in u
moves you along a given curve in Xyz space.

« Parameterization is not unique. It can be slow, fast,
with continuous / discontinuous speed, clockwise
(CW) or CCW...

parameterization

AN

u=0.3

u=0.8
u=0 u=1



Polynomial Interpolation

« An n-th degree polynomial
fits a curve to n+1 points

— called Lagrange Interpolation

— resultis a curve that is too
wiggly, change to any
control point affects entire

curve (non-local) P e |
— this method is poor source: Wikipedia
+ We usually want the curve Lagrange interpolation,
to be as smooth as possible degree=15

— minimize the wiggles
— high-degree polynomials are bad



Splines: Piecewise Polynomials

A spline is a piecewise polynomial:
Curve is broken into consecutive
segments, each of which is a

low-degree polynomial interpolating
(passing through) the control points

Cubic piecewise polynomials are the
most common:

— They are the lowest order polynomials that a spline

1. Interpolate two points and

2. allow the gradient at each point to be defined
(C1 continuity is possible).

— Plecewise definition gives local control.

— Higher or lower degrees are possible, of course.



Piecewise Polynomials

« Spline: many polynomials pieced together
+ Want to make sure they fit together nicely

Ch i.‘-ﬂﬂti]‘luit}-' — Co & G :,:-.::nnl;inui[:..- Cop & C) & C, Eun!inuily
‘ r . ‘.r ) ‘vl
Continuous in Continuous In Continuous in
position position and position,
tangent vector tangent, and

curvature



Splines
+ Types of splines:

— Herr_"mte Spllnes op
— Bezier Splines 1

— Catmull-Rom Splines Ps
— Natural Cubic Splines pﬂ p(u)
— B-Splines op,

—- NURBS
« Splines can be used to model both curves and surfaces




Cubic Curves in 3D

Cubic polynomial:
— p(u) = awr+bwF+cu+rd =7 v u 1flla b c d’
— a,b,c.d are 3-vectors, uis a scalar

Three cubic polynomials, one for each coordinate:
— x{u) =ar+ by +cu+d,
— y(u) =ar + b +cu +d,
— Z(u) = a_tP + b_uF + cu + d,

In matrix notation:

[J:[u} yiu) z[m.}]-[:.nEt u wu 1]

Or simply: p=[ufuiul1]A

-y

5 o B

B

-

T I

.l.n- I'-{-:- I'-Iu- .uh




Cubic Hermite Splines

Pi

Hermite Specification

We want a way to specify the end points and the
slope at the end points!



Deriving Hermite Splines

» Four constraints: value and slope
(in 3-D, position and tangent vector) at
beginning and end of interval [0,1] :
pP(O) =p;=(Xs, Y1, Z4) —
’D{:” - ‘EE= (xi’ yﬁ zi) ..___f_: the user constraints
P(O)=p=(X. ¥y Zy)
p(1)=p,=(Xy, Vo, Z))
« Assume cubic form: p(u) = au’+ bu¢+cu + d
 Four unknowns: a, b, ¢, d



Deriving Hermite Splines

+ Assume cubic form: p(u) =aw*+ bu’+cu +d

=p(0) =
=p(l)=a+b+c+d
p;=p’(0)=c

p,=p’(1)=3a+2b+c

« Linear system: 12 equations for 12 unknowns

(however, can be simplified to 4 equations for 4 unknowns)

« Unknowns: a, b, ¢, d (each of a, b, ¢, dis a 3-vector)



Deriving Hermite Splines

d=p,

at b+c+d=p,

¢ =p,
3a+2b+c  =p,
000 1
1 1 11
0 010
3210

Rewrite this 12x12 system

A

as a 4x4 system:

-

o

(=W




The Cubic Hermite Spline Equation

» After inverting the 4x4 matrix, we obtain:

2-2117x v 7]

—3 3_2 _1 *rﬁ 1!;- :-'1

3 - &2 & 2

xvzl=lu u ul I

[][ ]00101‘]}*]:[

‘ 1 00 0]x,y 2,

point on parameter basis control matrix

the spline vector (what the user gets to pick)

* This form is typical for splines

—basis matrix and meaning of control matrix change
with the spline type



Four Basis Functions for Hermite Splines

N

[ = 'TT_ -

20" =31 +1 p,

1 2

=21 +3u P

pay=| i
w =2 +u P

3 . n
o= P ]

I

4 Basis Functions

11

04

nay

o7t

ik

st

01t

-l

&y
transpose ~

Hermite Blending
Functions

Every cubic Hermite spline is a linear combination (blend)

of these 4 functions.



Piecing together Hermite Splines

It's easy to make a multi-segment Hermite spline:
— each segment is specified by a cubic Hermite curve

— just specify the position and tangent at each
“joint” (called knot)

— the pieces fit together with matched positions and first
derivatives

— gives C1 continuity
p'(1)=q'0)

p(1) = q(0)
p(0)
q(l)



Hermite Splines in Adobe lllustrator




Bezier Splines

\Variant of the Hermite spline

Instead of endpoints and tangents, four control points
— points P1 and P4 are on the curve P2 ~ _

— points P2 and P3 are off the curve
— p(0)=P1, p(1) = P4,

— p'(0) =3(P2-P1), p'(1)=3(P4 - P3)

Basis matrix is derived from

|
|
|
I
|
the Hermite basis (or from scratch) :

Convex Hull property:
curve contained within the convex

hull of control points P1

Scale factor “3" is chosen to make “velocity”
approximately constant



3 ]

The Bezier Spline Matrix

; 2
[u"" w1

&

3 2
[Hi L

]

Hermite basis

—1
3 -6
-3 3
1 0O

Bezier basis

1

0

1 0 0
0O 0 0
3300

3 -31]
3 0
0
0 0

o
1

0 0-33

Bezier to Hermite

"rl ."':Il ~1

—
e
F =

X, V,

F =l - -

vV, C

J —
4 ¥y “q

Bezier
control matrix

"rl }'] 1

X,

il

X,

Y2 &

}'_,1 g

| Xy

Yy &4

Bezier
control matrix



Bezier Blending Functions

b

Bezier Blending {)f - (1-1) ' P -
Functions
3t(1-1)°"| | p,
p(t)=
3= | s
! : | LPa.

+ Also known as the order 4, degree 3
Bernstein polynomials

Nonnegative, sum o 1

The entire curve lies inside the
polyhedron bounded by the
control points




DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines.
Similar to Horner rule for polynomials.
Can be extended to interpolations of 3D rotations.



Catmull-Rom Splines

Roller-coaster (next programming assignment)

With Hermite splines, the designer must arrange for consecutive
tangents to be collinear, to get C' continuity. Similar for Bezier.
This gets tedious.

Catmull-Rom: an interpolating cubic spline with built-in C* continuity.

Compared to Hermite/Bezier: fewer control points required,
but less freedom.



Constructing the Catmull-Rom Spline

Suppose we are given n control points in 3-D: py. pPs. ... Pp-

For a Catmull-Rom spline, we set the tangent at p, to
s*(Pisg — Piq) fori=2, ..., n-1, for some s (often s=0.5)

s is tension parameter. determines the magnitude (but not direction!) of
the tangent vector at point p,

What about endpoint tangents? Use extra control points p,. P, -

Now we have positions and tangents at each knot. This is a Hermite
specification. Now, just use Hermite formulas to derive the spline.

MNote: curve between p, and p,,, is completely determined
BY Pt Piv Piets Pisz -



Catmull-Rom Spline Matrix

-5 2-5 s-2 5 ||lx v I,

-

[.I y Z]=[”5 i u 1]‘ - L{l s 0 | T; ’!f‘: 'Z
0o 10 0 Xy g

basis control matrix

« Derived in way similar to Hermite and Bezier
« Parameter s is typically set to s=1/2.



Splines with More Continuity?

+ So far, only C' continuity.
+ How could we get C? continuity at control points?

« Possible answers:

— Use higher degree polynomials

degree 4 = quartic, degree 5 = quintic, ... but these get
computationally expensive, and sometimes wiggly

— Give up local control = natural cubic splines

A change to any control point affects the entire curve
— Give up interpolation = cubic B-splines

Curve goes near, but not through, the control points



Comparison of Basic Cubic Splines

Type Local Control  Continuity  Interpolation
Hermite YES C1 YES
Bezier YES C1 YES
Catmull-Rom  YES C1 YES
Natural NO C2 YES
B-Splines YES C2 NO
summary:

Cannot get C2, interpolation and local control with cubics



Natural Cubic Splines

+ |f you want 2nd derivatives at joints to match up, the
resulting curves are called natural cubic splines

+ |t' s a simple computation to solve for the cubics'
coefficients. (See Numerical Recipes in C book for
code.)

+ Finding all the right weights is a global calculation
(solve tridiagonal linear system)



B-Splines

» Glve up interpolation
— the curve passes near the control points

— best generated with interactive placement (because

it' s hard to guess where the curve will go) By

—_—

» Curve obeys the convex hull property ﬂ'—mﬁ:

pl.l o - L]
____'.‘F‘1

» C2 continuity and local control are good
compensation for loss of interpolation

p,®
°p,

p(a-]——_\

p(1)

P, ®
op,



B-Spline Basis

+ \We always need 3 more control points
than the number of spline segments

-1 3 -3 1]
113 -6 3 0
Ast=_
6|1-3 0 3 0
_l 4 ] {}_
-Pr'—.%-
Pi-2
GB.':FI:
Pi-i
-PI-




Other Common Types of Splines

* Non-uniform Splines

* Non-Uniform Rational Cubic curves
(NURBS)

* NURBS are very popular and used in
many commercial packages



How to Draw Spline Curves

Basis matrix equation allows same code

to draw any spline type

Method 1: brute force
— Calculate the coefficients
— For each cubic segment, vary v from 0 to 7 (fixed step size)
— Plug in v value, matrix multiply to compute position on curve
— Draw line segment from last position to current position

What' s wrong with this approach?
— Draws in even steps of u
— Even steps of u does not mean even steps of x
— Line length will vary over the curve

— Want to bound line length
» too long: curve looks jagged
» too short: curve is slow to draw




Drawing Splines, 2

« Method 2: recursive subdivision - vary step size to draw short lines

Subdivide (ul,ul,maxlinelength)
umid = (uld + ul)/2

x0 = F(uld)
xl = F(ul)
if |xl1 - x0| > maxlinelength

Subdivide (ul, umid, maxlinelength)
Subdivide (umid,ul ,maxlinelength)
else drawline (x0,x1)

+ Variant on Method 2 - subdivide based on curvature
— replace condition in “if” statement with straightness criterion
— draws fewer lines in flatter regions of the curve



Continuity at Join Points
(from Lecture 2)

—\e%\
« Discontinuous: physical separation
» Parametric Continuity oW
 Positional (C°): no physical separation e
« C!:CY and matching first derivatives L
o 2- 1 I
gefi\?ati\?gg matehing second A
« Geometric Continuity
» Positional (G°) = C° aorf e
 Tangential (G') : G° and tangents are 0 o, I
proportional, point in same direction, TSN
but magnitudes may differ L --\-\\,\

- Curvature (G?): G'and tangent lengths
igure 9.15 Change of
are the same and rate of length change  magnitde in 61 consinuiy
IS the same

source: Mortenson, Angel (Ch 9), Wiki



Continuity at Join Points

« Hermite curves provide C! continuity at curve
segment join points.
— matching parametric 15t derivatives
» Bezier curves provide C° continuity at curve
segment join points.
— Can provide G? continuity given collinearity of some
control points (see next slide)

« Cubic B-splines can provide C? continuity at
curve segment join points.
— matching parametric 2"d derivatives



Composite Bezier Curves

Joining adjacent curve segments is
an alternative to degree elevation.

/ 2 p3 -
Collinearity of cubic Bezier control @)

points produces G* continuity at join
point:

Po (b)

Figure 4.16 Composite Bézier Curves.

Evaluate at u=0 and u=1 to show tangents related to first and last control polygon line segment|

P"(0)=3(p,—p,) P D=3(P;—p,)

For G2 continuity at join point in cubic case, 5 vertices must be coplanar.

(this needs further explanation — see later slide)




Composite Bezier Surface

Bezier surface patches can e Sl :
provide G1 continuity at patch o P2 APm—— [Bir—1Pis  |Pis  |Pi
boundary curves. | | e = |
g i =y ! o1 e, d
For common boundary curve P2 [P CiPm | [Por——|Bs P25 |Px
defined by control poir_lts P14 | l______j; {[___ i |
p241 p341 p441 need CO”mea”ty pr 1P32 “qpﬂ%—' = P‘i3¢—~1-i% ll’% | P37
of: : : ]
i3 Pis Pish 1€[1:4] | | et e ||
: Dy Dy JULISUCp GRS, Pa 2
Two adjacent patches are C' / ==
across their common boundary : ,
. ~ Set of collinear points : _
iff all rows of control net Points defining the

boundary curve

vertices are interpretable as
polygons of C' piecewise
Bezier curves.

Figure 8.4 G' continuity across two Bézier patches.

*Cubic B-splines can provide C? continuity at surface patch boundary curves.

source: Mortenson, Farin



Continuity within a
(Single) Curve Segment

« Parametric Ck Continuity:
— Refers to the parametric curve representation and parametric
derivatives
— Smoothness of motion along the parametric curve

— “A curve P(t) has kth-order parametric continuity everywhere in the
t-interval [a,b] if all derivatives of the curve, up to the kth, exist and

are continuous at all points inside [a,b].”

— A curve with continuous parametric velocity and acceleration has
2"d-order parametric continuity.

x(0) = Ke" cosd  y(0) = Ke"sind

apply product rule

. i garithmi
X' (6) = (Ke")(-sin8) + (cos) (Ke*) (be™’)[ 7 s e

y'(6) = (Ke"?)(cosh) + (sind)(Ke"?) (be*?)

Example

1st derivatives of parametric expression are
continuous, so spiral has 1st-order (C!) parametric

continuity. )

source: Hill, Ch 10




Continuity within a
(Single) Curve Segment (continued)

- Geometric Gk Continuity in interval [a,b] (assume P is curve):

— “Geometric continuity requires that various derivative vectors have
a continuous direction even though they might have discontinuity in
speed.”

_ GO — CO
— G1: P’(c-) =k P’(c+) for some constant K for every C in [a,b] .
« Velocity vector may jump in size, but its direction is continuous.
— G2 P’(c-) =k P’(c+) for some constant k and P’’(C-) = m
P’’(c+) for some constants K and m for every C in [a,b] .
« Both 1st and 2" derivative directions are continuous.

These definitions suffice for that textbook’s treatment, but there is more to the story...

source: Hill, Ch 10



Reparameterization Relationship

Curve has G' continuity If an arc-length
reparameterization exists after which it has C'
CO n‘“nurty source: Farin, Ch 10

“Two curve segments are Gk geometric
continuous at the joining point if and only if there
exist two parameterizations, one for each curve
segment, such that all ith derivatives, i<k,
computed with these new parameterizations
agree at the joining point.”  source: cs.mtu.edu



Additional Perspective

» “Parametric continuity of order n implies
geometric continuity of order n, but not
vice-versa.”



Continuity at Join Point

Parametric Continuity

Defined using
differential properties of
curve or surface

Ck more restrictive than Gk

p;(0)

Figure 3.27 Conditions required for (o continuity.

Geometric Continuity

Defined using differential
properties of curve or surface (e.g.
unit tangent vector, curvature),
independent of parameterization.

G!: common tangent line

GZ2: same curvature, requiring
conditions from Hill (Ch 10) & (see
differential geometry slides)

— Osculating planes coincide or
— Binormals are collinear.

source: Mortenson Ch 3, p. 100-102



Parametric Cross-Plot

}1

{5 165 52 R BBE s ‘;
| | | | | '—-r—

T BEEDHEREE
e I ' f]\ ! =

AT TR o T

/{/ ! \ i /4\

7/ - b4l H%
& EE | |

T

t
Figure 6.4 Cross plots: a two-dimensional Bézier curve together with its two coordinate functions.

For Farin’s discussion of C! continuity at join point, cross-plot notion is useful.

source: Farin, Ch 6



Composite Cubic Bezier Curves
(Continued) source: Farin, Ch 5

}!

B

[ 1] ‘ 1] | | [ 1] [
: TG EEEREEEp RN ;J?b4
Domain T A
. ] | o Lo+ / T
violates SN TR 2 'zﬁ HT
(5.30) fory N §-|?/'g'L 3
component. ¢ <R e e
c b a
curves are
Figure 5.12 Composite curves: a CP example. identical in X,y
space
;
‘ | 1 fL | El‘l'i,l\l Jlb
. 11A bdd - = D,
Domain — SRR AT
ANEEEEEE EENRNEEREY SEREEEL §
EEREEERERAREEEEL= . VENEES ams 4 Wimnmu
(5.20)fory TSNS EELeed
component. ¢ e e
¢ b a
Figure 5.13 Composite curves: a C! example.
Parametric C! continuity, with 3
parametric domains considered, —[b _bz] [b b] (5.30)

requires (for x and y components): (b — a) (C b)



Composite Bezier Curves

For G2 continuity at join point in cubic case, 5 vertices

pm—2’ pm—l’ pm — qO’ql’qZ

must be coplanar.

(follow-up from prior slide)

Achieving this might require adding control points (degree elevation).

- 2|(p, —Po)x (P, —p.) _2lp, —p)x(ps P> )

0 1 —

\3“31—[30‘3 /‘ 3“33 _p2‘3

curvature at endpoints of curve segment

pi xp;"

consistent with: «, = 3
p;

source: Mortenson, Ch 4, p. 142-143



C2 Continuity at Curve Join Point

« “Full” C?continuity at join point requires:
— Same radius of curvature*
— Same osculating plane*
— These conditions hold for curves p(u) and r(u) if:

Pi =T
u u
P! =T,
uu uu
D, =1,

* see later slides on topics in differential geometry
source: Mortenson, Ch 12



Piecewise Cubic B-Spline Curve
Smoothness at Joint

The effects of multipli-coincident control points and multiple knot values on
the continuity at segment joints are worth some further discussion. Here is a sum-
mary of the continuity conditions:

1. Control point multiplicity =1: c? and G <«— familiar situation

2. Control point multiplicity =2 : c? an@ with knots restricted to a re-
duced convex hull.

3. Control point multiplicity=3: C 7 and@ The curve interpolates the
riple control point, and the segments at each side of the joint are straight lines.

4. Control point multiplicity = 4 @nd GY. The curve segments on both
sides of the joint are straight lines and interpolate the control points on both sides.

5. Knot multiplicity=1: C* and G

6. Knot multiplicity =2 : C'and G', with knots restricted to a reduced con-
vex hull.

7. Knot multiplicity=3: C Oand G°. The curve interpolates the control

point. Curve segment shapes at the joint are free and not constrained to straight lines.

8. Knot multiplicity =4 : The curve is discontinuous, ending on one control
point and resuming at the next. The shapes of the curve segments adjacent to the dis-
continuity are unconstrained.

<+— |ooks incorrect

<«— |ooks incorrect

<+«— |looks incorrect

<«— familiar situation

<— curvature discontinuity

source: Mortenson, Ch 5



Control Point Multiplicity Effect on
Uniform Cubic B-Spline Joint

C?2 and G2
control point
multiplicities = 1

C2 and G2

One control point multiplicity = 2

0 0
«  Cland G
One control point multiplicity = 4
C2 and G2 K .
One curve segment degenerates into a
One control point multiplicity = 3 single point. Other curve segmentis a

straight line. First derivatives at join
point are equal but vanish. Second
derivatives at join point are equal but
vanish.

p“(u) = %(—u2 +2u-1)p, +%(3u2 —4u)p, +%(—3u2 +2u+1)p, +%u2p3

p™ ) =(-u+Dp, +(Bu—-2)p, +(-3u+1)p, +up;,



Knot Multiplicity Effect on Non-
uniform B-Spline

* |If a knot has multiplicity r, then the B-
spline curve of degree n has smoothness
C™r at that knot.

source: Farin, Ch 8



A Few Differential Geometry
Topics Related to Continuity



Local Curve Topics

Principal Vectors
— Tangent

— Normal

— Binormal

Osculating Plane and Circle

Frenet Frame

Curvature

Torsion

Revisiting the Definition of Geometric Continuity

source: Ch 12 Mortenson



Intrinsic Definition
(adapted from earlier lecture)

* No reliance on external frame of reference

 Requires 2 equations as functions of arc

|ength* S: 1 *length measured along the curve

1) Curvature: ;:f(s)
2) Torsion: 7 =g(s)

Torsion (in 3D) measures how much
curve deviates from a plane curve.

* For plane curves, alternatively: ‘
1 do e

p ds

Figure 2.1 Intrinsic definition of a curve.

Treated in more detail in Chapter 12 of Mortenson and Chapter 10 of Farin.

source: Mortenson



Calculating Arc Length

« Approximation: For parametric
Interval u, to u,, subdivide curve
segment into n equal pieces.

L= _ . where | = \/(pi _pi—l)'(pi _pi—l)

using Pep= \p\z

L= j p" ep“du iS more accurate.

source: Mortenson, p. 401



Figure 12.1 Tangent vector and line.

(=P
o

unit tangent vector:

source: Mortenson, p. 388



Normal Plane

* Plane through p; perpendicular to t;

f.
\ SR s

T q=(xY,2)
/\

Figure 12.2 Normal plane.

X X+Y Y+ 2—(XX +V Y +22)=0

source: Mortenson, p. 388-389



Principal Normal Vector and Line

Moving slightly

along curve in
neighborhood of p; -
causes tangent
vector to move in
direction specified

by: p:lu

Use dot product
to find projection
of p™ onto p!

Principal normal
vector is on

intersection of Binormal vector

normal plane with bi =t. xn,

(osculating) plane .

shown in (a). n, =k;/ k| lies in normal
plane.

(©)

Figure 12.3 Principal normal vector and line.

source: Mortenson, p. 389-391



Limiting position
of plane defined
by p; and two
neighboring
points p; and py,
on the curve as
these neighboring
points
independently
approach p;.

Note: p;, p; and
P, cannot be
collinear.

Osculating Plane

Normal vector lies in osculating plane.

Tangent
vector lies in
osculating
plane.

Figure 12.4 Osculating plane.

X — X,
Y-
Z—1Z,

u

X.

y;

u

7.

X

uu
Yi
7!

uu
I

uu
|

source: Mortenson, p. 392-393



Frenet Frame

Rectifying plane
at p; is the plane
through p; and
perpendicular to
the principal
normal n;:

(Q-p;)en; =0

b

Figure 12.5 The moving trihedron.

Note changes to Mortenson’s figure 12.5.
source: Mortenson, p. 393-394



Curvature

« Radius of curvature Is >
o; and curvature at Radiusof
point p; on a curve Is:

Osculating

pi xp;"
u 3
P;

1
K. = =

Ipi

} } ter of curvature o
Recall that vector pi lies in the Castiek

osculating plane.

Curvature of a planar curve Figure 12.6 Curvature.

in X, y plane:
1 d%y/d¥
p i+ (dy/dx?]”

Curvature is intrinsic and does not change
with a change of parameterization.

source: Mortenson, p. 394-397




Torsion

« Torsion at p; is limit of ratio of
angle between binormal at p; and =
binormal at neighboring point p,, to
arc-length of curve between p,,
and p;, as p, approaches p; along

the curve.
u uu uuu u uu uuu Recalyng :"
. [pi Pi P ]_ Pi '(pi XP; ) Planeh ™~ 3/ \
i u uu|? B u uu|? A B
‘pi X P; ‘pl X P; Rectifying
Plane i
Figure 12.7 Torsion.

Torsion is intrinsic and does not change
with a change of parameterization.

source: Mortenson, p. 394-397



Reparameterization Relationship

« Curve has G' continuity if an arc-length
reparameterization exists after which it has
C' continuity.

* This Is equivalent to these 2 conditions:

— Cr2 continuity of curvature
— Cr3 continuity of torsion

Local properties torsion and curvature are
Intrinsic and uniquely determine a curve.

source: Farin, Ch 10, p.189 & Ch 11, p. 200



Local Surface Topics

Fundamental Forms
Tangent Plane
Principal Curvature
Osculating Paraboloid

source: Ch 12 Mortenson



Local Properties of a Surface
Fundamental Forms

Given parametric surface p(u,w)

Form I gpedp = Edu? + 2Fdudw+Gdw?

E=p°ep” F=piep® G=p"ep"

Form Il: —dp(u,w)edn(u,w) = Ldu? + 2Mdudw-+ Ndw?
puxpw
L=p™ en M =p™en N=p"en n=r——
p" xp"|

Useful for calculating arc length of a curve on a
surface, surface area, curvature, etc.

Local properties first and second fundamental forms

are intrinsic and uniquely determine a surface.

source: Mortenson, p. 404-405



Local Properties of a Surface
Tangent Plane

p" =op(u,w)/aou ;
p" =op(u,w)/ow

(g-p)e(p*xp")=0

X=X X X
y T y| yiu yIW — O Figure 12.9 Tangent plane.
z2-17, 7; 1z
0 ——
q p(u;,w;) components of parametric tangent

vectors pY(u;,w;) and p“(u;,w;) source: Mortenson, p. 406



Local Properties of a Surface
Principal Curvature

« Derive curvature of all parametric curves C on parametric surface S
passing through point p with same tangent line | at p.

contains |

normal curvature vector k, =
projection of curvature vector k
onton atp

k., =(ken)n

!
bein tangent plane with
parametric direction

normal curvature: K, = ken
dw/du

Fiqure 12.10 Normal curvature.

~ L(du/dt)? +2M (du/ dt)(dw/ dt) + N (dw/ dt)’

K, = E(du/dt)2 Jr2|:(du/dt)(dw/dt)+G(dW/dt)2

source: Mortenson, p. 407-410



Local Properties of a Surface
Principal Curvature (continued)

Rotating a plane
around the normal
changes the
curvature i,

LN — M?>0

-

(b) Elliptic tn:nl<>7

‘\.\]’
Principal

Directions

el

umbilical poir

£ \\ k)l
/

Constant

\\

7
/
_//f’_> (c¢) Spherical ‘\J/
1t

.—-——-"’/

. Tyl ey
| (d) Hyperbolic p«—W
| LN - M?<0 -

N
| /N
(a) l/
4 (e) Parabolic point
IN-M’=0

curvature extrema:
principal normal
curvatures

typographical

2+ M2 + N? £ <—

Figure 12.11 Principal curvature.

error?

source: Mortenson, p. 407-410



Local Properties of a Surface
Osculating Paraboloid

Second
fundamental form
helps to measure
distance of surface
from tangent
plane.

[l «———|d = (q-p)en

Figure 12.13 Osculating paraboloid at a point on a surface.

As q approaches p:  d = fB (Ldu2 + 2Mdudw+ Ndw? )}

\— _/
e

Osculating Paraboloid

source: Mortenson, p. 412



Local Properties of a Surface
Local Surface Characterization

source: Mortenson, p. 412-413

a)LN-M?2>0
Elliptic Point:
b)LN —M? <0 locally convex
Hyperbolic Point:
“saddle point”
LN -M?=0
L2+M?+N?=%0
L=M=N=0 typographical
error?
Planar Point

Parabolic Point:
single line in
tangent plane along
which d =0

(not shown)




