














































































































Continuity at Join Points 

(from Lecture 2)

• Discontinuous: physical separation

• Parametric Continuity 
• Positional (C0 ): no physical separation

• C1 : C0 and matching first derivatives

• C2 : C1 and matching second 
derivatives

• Geometric Continuity
• Positional (G0 ) = C0

• Tangential (G1) : G0 and tangents are 
proportional, point in same direction, 
but magnitudes may differ

• Curvature (G2) : G1 and tangent lengths 
are the same and rate of length change 
is the same

source: Mortenson, Angel (Ch 9), Wiki



Continuity at Join Points 

• Hermite curves provide C1 continuity at curve 

segment join points.

– matching parametric 1st derivatives

• Bezier curves provide C0 continuity at curve 

segment join points.

– Can provide G1 continuity given collinearity of some 

control points (see next slide)

• Cubic B-splines can provide C2 continuity at 

curve segment join points.

– matching parametric 2nd derivatives



Composite Bezier Curves 

Evaluate at u=0 and u=1 to show tangents related to first and last control polygon line segment.
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Joining adjacent curve segments is 

an alternative to degree elevation.

Collinearity of cubic Bezier control 

points produces G1 continuity at join 

point:

For G2 continuity at join point in cubic case, 5 vertices must be coplanar.

(this needs further explanation – see later slide)



Composite Bezier Surface

• Bezier surface patches can 

provide G1 continuity at patch 

boundary curves.

• For common boundary curve 

defined by control points p14, 

p24, p34, p44, need collinearity 

of:

• Two adjacent patches are Cr

across their common boundary 

iff all rows of control net 

vertices are interpretable as 

polygons of Cr piecewise 

Bezier curves.   

source: Mortenson, Farin
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•Cubic B-splines can provide C2 continuity at surface patch boundary curves.



Continuity within a 

(Single) Curve Segment
• Parametric Ck Continuity:  

– Refers to the parametric curve representation and parametric

derivatives

– Smoothness of motion along the parametric curve

– “A curve P(t) has kth-order parametric continuity everywhere in the 

t-interval [a,b] if all derivatives of the curve, up to the kth, exist and 

are continuous at all points inside [a,b].” 

– A curve with continuous parametric velocity and acceleration has 

2nd-order parametric continuity. 

  cos)( bKex 

source: Hill, Ch 10
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apply product rule

1st derivatives of parametric expression are 

continuous, so spiral has 1st-order (C1) parametric 

continuity.

Note that Ck continuity implies Ci 

continuity for i < k.

Example



Continuity within a 

(Single) Curve Segment (continued)

• Geometric Gk Continuity in interval [a,b] (assume P is curve):  

– “Geometric continuity requires that various derivative vectors have 

a continuous direction even though they might have discontinuity in 

speed.”

– G0 = C0

– G1: P’(c-) = k P’(c+) for some constant k for every c in [a,b] .

• Velocity vector may jump in size, but its direction is continuous.

– G2: P’(c-) = k P’(c+) for some constant k and P’’(c-) = m

P’’(c+) for some constants k and m for every c in [a,b] .

• Both 1st and 2nd derivative directions are continuous.

Note that, for these definitions, Gk continuity implies Gi continuity for i < k.

source: Hill, Ch 10

These definitions suffice for that textbook’s treatment, but there is more to the story…



Reparameterization Relationship

• Curve has Gr continuity if an arc-length 

reparameterization exists after which it has Cr

continuity.

• “Two curve segments are Gk geometric 

continuous at the joining point if and only if there 

exist two parameterizations, one for each curve 

segment, such that all ith derivatives,        , 

computed with these new parameterizations 

agree at the joining point.”

source: Farin, Ch 10

source: cs.mtu.edu
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Additional Perspective

• “Parametric continuity of order n implies 

geometric continuity of order n, but not 

vice-versa.”



Continuity at Join Point

• Defined using parametric

differential properties of 

curve or surface

• Ck more restrictive than Gk

source: Mortenson Ch 3, p. 100-102

• Defined using intrinsic differential 

properties of curve or surface (e.g. 

unit tangent vector, curvature), 

independent of parameterization.

• G1: common tangent line

• G2: same curvature, requiring 

conditions from Hill (Ch 10) & (see 

differential geometry slides)

– Osculating planes coincide or

– Binormals are collinear.

Parametric Continuity Geometric Continuity



Parametric Cross-Plot

source: Farin, Ch 6

For Farin’s discussion of C1 continuity at join point, cross-plot notion is useful.



Composite Cubic Bezier Curves 
(continued) source: Farin, Ch 5

curves are 

identical in x,y

space
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Parametric C1 continuity, with 

parametric domains considered, 

requires (for x and y components):

(5.30)

Domain 

violates

(5.30) for y

component.

Domain 

satisfies

(5.30) for y

component.



Composite Bezier Curves 

source: Mortenson, Ch 4, p. 142-143
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For G2 continuity at join point in cubic case, 5 vertices 

must be coplanar.

(follow-up from prior slide)

Achieving this might require adding control points (degree elevation).
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C2 Continuity at Curve Join Point 

• “Full” C2 continuity at join point requires:

– Same radius of curvature*

– Same osculating plane*

– These conditions hold for curves p(u) and r(u) if:

source: Mortenson, Ch 12
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* see later slides on topics in differential geometry



Piecewise Cubic B-Spline Curve 

Smoothness at Joint

source: Mortenson, Ch 5

curvature discontinuity

familiar situation

familiar situation

looks incorrect

looks incorrect

looks incorrect



Control Point Multiplicity Effect on 

Uniform Cubic B-Spline Joint

C2 and G2

control point 

multiplicities = 1

C2 and G2

One control point multiplicity = 2

C2 and G2

One control point multiplicity = 3
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C0 and G0

One control point multiplicity = 4

One curve segment degenerates into a 

single point.  Other curve segment is a 

straight line.  First derivatives at join 

point are equal but vanish.  Second 

derivatives at join point are equal but 

vanish.
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• If a knot has multiplicity r, then the B-

spline curve of degree n has smoothness 

Cn-r at that knot.

Knot Multiplicity Effect on Non-

uniform B-Spline

source: Farin, Ch 8



A Few Differential Geometry 

Topics Related to Continuity



Local Curve Topics

• Principal Vectors

– Tangent

– Normal

– Binormal

• Osculating Plane and Circle

• Frenet Frame

• Curvature

• Torsion

• Revisiting the Definition of Geometric Continuity

source: Ch 12 Mortenson



Intrinsic Definition
(adapted from earlier lecture)

• No reliance on external frame of reference

• Requires 2 equations as functions of arc 

length* s:

1) Curvature: 

2) Torsion: 

• For plane curves, alternatively:

)(
1

sf


source: Mortenson

)(sg

*length measured along the curve

Torsion (in 3D) measures how much 

curve deviates from a plane curve.

Treated in more detail in Chapter 12 of Mortenson and Chapter 10 of Farin.
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Calculating Arc Length

• Approximation: For parametric 

interval u1 to u2, subdivide curve 

segment into n equal pieces.
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where

using

is more accurate.



Tangent
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t unit tangent vector:

source: Mortenson, p. 388



Normal Plane

• Plane through pi perpendicular to ti
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source: Mortenson, p. 388-389



Principal Normal Vector and Line

u
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Moving slightly 

along curve in 

neighborhood of pi

causes tangent 

vector to move in 

direction specified 

by: 

source: Mortenson, p. 389-391

Principal normal 

vector is on 

intersection of 

normal plane with 

(osculating) plane 

shown in (a).

Use dot product 

to find projection 

of         onto        

Binormal vector

lies in normal 

plane.        

uu
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Osculating Plane

Limiting position 

of plane defined 

by pi and two 

neighboring 

points pj and ph

on the curve as 

these neighboring 

points 

independently 

approach pi .  

Note: pi, pj and 

ph cannot be 

collinear.    

Tangent 

vector lies in 

osculating 

plane.    
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source: Mortenson, p. 392-393

Normal vector lies in osculating plane.    



Frenet Frame

Rectifying plane 

at pi is the plane 

through pi and 

perpendicular to 

the principal 

normal ni:  

0)(  ii npq
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i

source: Mortenson, p. 393-394

Note changes to Mortenson’s figure 12.5.



Curvature

• Radius of curvature is 

i and curvature at 

point pi on a curve is:   
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source: Mortenson, p. 394-397
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Curvature of a planar curve 

in x, y plane:

uu

ipRecall that vector lies in the 

osculating plane.

Curvature is intrinsic and does not change 

with a change of parameterization.



Torsion

• Torsion at pi is limit of ratio of 

angle between binormal at pi and 

binormal at neighboring point ph to 

arc-length of curve between ph

and pi, as ph approaches pi along 

the curve.

source: Mortenson, p. 394-397
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Torsion is intrinsic and does not change 

with a change of parameterization.



Reparameterization Relationship

• Curve has Gr continuity if an arc-length 

reparameterization exists after which it has 

Cr continuity.

• This is equivalent to these 2 conditions:

– Cr-2 continuity of curvature

– Cr-3 continuity of torsion

source: Farin, Ch 10, p.189 & Ch 11, p. 200

Local properties torsion and curvature are 

intrinsic and uniquely determine a curve.



Local Surface Topics

• Fundamental Forms

• Tangent Plane

• Principal Curvature

• Osculating Paraboloid

source: Ch 12 Mortenson



Local Properties of a Surface 
Fundamental Forms

• Given parametric surface p(u,w)

• Form I:

• Form II:

• Useful for calculating arc length of a curve on a 
surface, surface area, curvature, etc.

22 2 GdwFdudwEdudd  pp

Local properties first and second fundamental forms

are intrinsic and uniquely determine a surface.

source: Mortenson, p. 404-405
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Local Properties of a Surface 
Tangent Plane
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source: Mortenson, p. 406
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q p(ui,wi) components of parametric tangent 

vectors pu(ui,wi) and pw(ui,wi)



Local Properties of a Surface
Principal Curvature

• Derive curvature of all parametric curves C on parametric surface S

passing through point p with same tangent line l at p.

nnkk )( n

source: Mortenson, p. 407-410

in tangent plane with 

parametric direction 

dw/du

contains l

normal curvature vector kn = 

projection of curvature vector k

onto n at p

nk nnormal curvature:
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Local Properties of a Surface 
Principal Curvature (continued) 

source: Mortenson, p. 407-410

typographical 

error?

Rotating a plane 

around the normal 

changes the 

curvature n.

curvature extrema: 

principal normal 

curvatures



Local Properties of a Surface 
Osculating Paraboloid
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source: Mortenson, p. 412

Second 

fundamental form 

helps to measure 

distance of surface 

from tangent 

plane.
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As q approaches p:

Osculating Paraboloid



Local Properties of a Surface     
Local  Surface Characterization 

0) 2 MLNc

0) 2 MLNb

0) 2 MLNa

Elliptic Point: 

locally convex

Hyperbolic Point: 

“saddle point”

0222  NML

source: Mortenson, p. 412-413

typographical 

error?
0 NML

Planar Point 

(not shown) Parabolic Point: 

single line in 

tangent plane along 

which d =0


